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Cognitech researchers and consultants successfully worked on quite a number of topics culminating in an
accurate reconstruction of shapes from shading and shape based image restoration, as well as frame fusion,
stereo matching, and video processing. These were integrated into a forensic image and video processing
system which achieved great success in the legal fields [1,2].

Personnel who worked on this effort, listed in alphabetical order, were P.-L. Lions, M. Lyublinsky, J.-M
Morel, S. Osher, L. Rudin, and P. Yu.

We began with the classical problem of a surface illuminated by a single distant source. The surface is
given by the equation

(1) z = u(Z,y).

The normal N = + and the intensity satisfies

(2) l(x,y) = R(N).

In the simple, Larnbertian case the equation becomes

(3) 1 cos 0 = (a, 0, -r).-(-N)

No[1: + 1lt7y + 7
u + ~+1I

This was first studied carefuflly in [11] under the direction of our consultant, Dr. Pierre-Louis Lions.
Equation (3) can be solved ninterically using the theory of viscosity solutions for llamilton-Jacobi equations
[5]. The numerical schemes used in [6] were only first. order accurate, monotone methods. Hligh order accurate
essentially nonoscillatory (ENO) were devised in [9,10] by the principal investigator of this contract. The
main idea comes from a uniqueness theorem in [11] concerning the viscosity solution of the Hamilton-Jacobi
equation

(4) IX, Y, V ,,) = I\1 +2 + 12 - al,, - oil- = 0, in (

with (-a, -/3, 7), the direction cosines of the distant light, source.

Given a level surface, u = 0 on (IQ, we wish to solve (4). There is a lack of uniqueness as exemplified
in one space dimension for overhead light. (7 = 1). If Q = {x,0 < x < 1), given u = 0 at z = 0 or z = 1, we
take I = ,+(-12. Then two possible solutions are u = -(z(I - x)). This is visually an obvious fact to

any observer. The uniqueness comes from the knowledge of the shape u(zo, yo) where I(xo, yo) = 1.

Heret = -i- - I vanishes when I = 0. \Ve generally need to impose the value of u at such points,
subject of course to a compatibility condition. In this case we need

/2 1 I(5) 1 -=d - aU

<max -- dx, I-
2

This condition generalizes easily.

We have derived higher order ENO codes which dramatically increase the accuracy obtained in [1]. Also,
based on [8,12] we have devised a marching algorithm using the distance function which gives very rapid
convergence to the solution of (4) with the appropriate conditions at points of maximum intensity.
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Next, we used the results described by our consultant in [7] to handle shadows and more general boundary
conditions for this Lambertian case. They are best described by appealing to the unsteady evolution problem
(6) ,t /tI + U.2 + ,A<u - .OU - / -

I + U V Y 7.

If the left boundary is z = 0, then classical theory of initial-boundary value problems for hyperbolic
equations indicate that a boundary condition should be imposed if

' <a
01 + U.2 + U<

or, at steady state, if

(7) olu, uy + fu- a -,u <0.

Different types of boundary conditions arise in the presence of shadows and grazing rays. They can be
exemplified by the one dimensional case in which the exact surface is

(8) u -- V•i a2 +i Vr'- z2 for zI l< a
U = 0 if Ir} > a.

We wish to solve

(9) fit = I Vi- -7",

to steady state.

The first case is that of an apparent. contour. This happens when we have overhead light with y =
1, a = 1, and

= X2 if IzI __ 1
Il- 1,z1>1.

Thus we solve ,,, \/ _-Z- /I" + 1,,, - 1, Ix 1 _< 1.

This has a characteristic boundary at. x = ±1. Thus we impose no boundary conditions there. We do
impose u = 1 at z = 0 because 1(0) = 1.

More generally at x = -a, we need no boundary condition if u= U > a = a =* a> a. At

z = -a, u, = 1 I = 1. Thus we need to prescribe u(-a) = Vr _-.2 - vfl--a2 at a grazing light edge,
e.g. z = 7, u.() (-y)

Finally at a shadow edge, i.e. at x = •, we need to prescribe u(1) = u(y) - a.

We have also developed methods for more complicated models involving highlights. Here

(10) 1(z,y) = cosO + c(cos O)m

for c, m functions of the metal. Thus the ilamilton-Jacobi equation to be solved is

aut + #fl+7 + cau, + #U +7
l(X, y)+
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The numerical methods used to solve the Ilamilton-Jacobi equations were high order ENO as developed
in [9,10]. The equation is always of the form

(11) = -(Z, y, u, uY).

Monotone schemes are of the form

(12) u0+ 1 u'=0. Af~yj, D' 0, LFu';DYu!',;lt, DY-0.)

with if(u, u, U, U) = H(u, U) and tl(T, 1; T, 1) denotes its monotonicity.

Another speed up of the steady state calculation comes via nonlinear SOR. This works because of
monotonicity. Godunov's scheme is such that we can analytically solve for the value of uj at the central
point. For high order ENO methods we rewrite the steady state algorithm as

(13) if monotone = H monotone _ jjENO.

We lag the right side of this equation and update using nonlinear SOR on the left. This algorithm is quite
fast.

Figures 1-16 demonstrate the success of this approach for a single-view shape-from-shading.

Our next effort concerned the problem of photometric stereo. There, the same Lambertian surface is
viewed at different times of the day. Thus the goal is to find u, given measurements (which have some errors)

(14) F(K) = j(K) + 2, + , - (,(K),,' + (K)u, +Y (K)) = 0

The idea is to minimize the functional

(15) in rW(K)IF(K)12Pdzdy,

using weights 0 < w(K). We also let p - oo and use gradient descent and artificial time. Thus we seek
steady solutions of

11, = W(K ){Trace [D 2 1. OFK) (z, Vui) ®& i9K(r
K r 1 (91 11

+ F(K) V )OF(K) Vu)}
+ (X, v,,) • Ox (Z,

Unfortunately, there is no uniqueness in general. We could, for example, take P() = 0) i 1,2 with

/3(1) = - (7y())2, #(2) = VI - (y( 2)) 2 , then u = ±z are both solutions. Also any continuous piecewise
linear function of slope 1+1, is a Lipschitz continuous solution. In fact, for any planar solution of the form

0
U = C IX + C2y + C3.0

Then the function

V = dlz +d 2 y+ d3

is also a solution if

#+ •C)c 2 + 1(') 1 + c 2 = CY(2)d + # 2)d 2 + 1(2 ) rl +d +d. +des
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From a geometric point of view, the statement is that two planes are both solutions iff all light sources
lie on the great circle bisecting the angle between them. In general, 3 at most two planar solutions and in
particular, only one if there are at least three light sources which are not in the same plane.

This they is valid for the weights w(K) = 1; however we use W(K)[F(K)]½[I(K)]I in our experiments.

The steady state problem is a degenerate quasilinear elliptic equation. It degenerates in direction • (at
z,p-- Vu(z)) if O,(zVi( ) . = 0 for all K. This is equivalent to

I(K) p-t +(K)t= 0 y(K) = ((K),-K)))

or

(E) ()p +t)
I(/K+ -P F

are all collinear.

An example of this is for one overhead light., p)(xo) = 0, M() = 0. The second light is arbitrary.

Recall our counter example to uniqueness

( 0 ) Ie ( #(
1(0) = -, ,,(z,Y) = ==.

If we check condition (E) for u - x we have

or
1(2) j 1()2-1()1-(32)

Thus 00) and )3(2) have the samne sign / 13(0.) =0(2). This is a contradiction, thus we have uniform ellipticity
here.

We have proven the following.

Theorcin: Given a inariinuin principle satisfying boundary condition, the evolution equation (16) is a well-
posed initial value problem in the sense of viscosity solutions, even if there are degeneracies.

Remark: Two lights are collinear when

Ip
~/FI2 + 1 0

for one and

p =Vu solvesIVI+ V Il2 = f .p+-.

This is equivalent to I = 1, p = 1) which is the precise loss of uniqueness in the single view case
discussed earlier.
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Additionally, if p = Vu for a solution iu then

(D2u) + 9M =-0.

If at (ZO, Vu(xo)), %( = 0, this implies =: D&u(zo) has one zero and one nonzero eigenvalue. Then (E) is
valid at (z0 , Vu(zo)) with a direction of degeneracy which corresponds to a nonzero eigenvalue.

In general, the operator can be degenerate since the initial condition is arbitrary. An example occurs if
p = Vuo(zo) = 0. Then (E) occurs if the 6(0) are collinear (so the directions of light all lie on a great circle).

Our equation (16) can be derived as follows. If we set

F()(x, Vu) = 0
*D'u* OF(M OF( 0

- + = 0

=>Trace (D 2U OFMi 9F(')•

0; 5Ox

We obtain the right side of (16) by summing over (i).

Another derivation conies fromr considering the least LP weighted norm of the error and letting p oo.
This leads us to natural boundary conditions.

Figures 17-24 show the results of our photometric stereo algorithm on real data.

An important problem relating to reconstruction of shapes involves stereo matching. We are given two
views of the same images from different cameras. We call the intensity functions L(z, y) and R(z, y), and
we seek to find matching finctions u(x, y), v(x, y) so that L(z + u(x, y), y + V(Z, y)) is as close as possible
to R(z, y).

Our approach is based on L' minimization

(17) mrin j IL(x + u(z, y1), y + v(x, y)I - R(x, y)Idxdy.

This is not sufficiently regularized - there are many possible solutions. We modify this by

(18) min JL(x + ,,(z, y), y + v(z, y)) - R(x, y)jdzdy

+ F(L,R,u, v,z,y).

F is a complicated function related to the constraints.

Solving this problem directly via gradient descent, will usually lead to a local minimum. We thus take
a coarse to fine procedure to lead to our descried solution. We start by replacing L(z, y) and R(z, y) by
blurred versions: L0 = G, * L, R, = G, * R, where

G, = Goe-

and * denotes convolution.

We gradually reduce the variance ff and use the iteration result as an initial guess for a smaller a. We
thus can successfully approach the global minimimini of this functional.
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The algorithm is as follows:

Initial guess a0, u, v, for a0 large enough. Find new u, v by minimizing (18) with L and R replaced by
L, R., reduce a and iterate again.

The Euler-Lagrange equations for this functional show that when VL0 -VR0 < 0, the solution procedure
may lead to spurious minima. We remove this term when the sign turns negative.

The scaling is important in our minimization procedure. This leads to severe time step resolutions in
our numerical method. We fix this by dynamically rescaling via an arc tangent function.

We note also that u and v can be discontinuous. The regularization term in F might prevent this from
developing. These discontinuities in the matching functions are related to edges in the images. We used
ENO schemes near discontinuities with good results.

Additionally, if L and R are flat, u and v can be assumed to be smooth. Thus the coefficients of the
viscosity terms coming from F are large in fiat regions and small near edges.

We also devised a morphological matching method concentrating on image features, i.e. the level set
directions and curvature. We again let L(x, y) and R(z, y) be time intensity function of two images. Let
u(z, y) and v(r, y) be the nmatching function between these two images. For the statement "match level set
directions", we mean:

raini F, (x, y, tL, ?1,, Vy, v, vy, L, R)dxdy
U,/V

where

VL(F + y,, y + a') VR(z, m ,)(zyui,,,, ,,v, v., , L,I) = 1 -IVL(x+u,y+v)l IVR(x,y)l

or

F1 = I [Lr(l + u,,) + Lyvv]J? + [L,,y + L,(l + vy)]R,

/[L,(l + u,) + Lv]-2 + [Luy + L,(I + V)] 2-/V R + R,

where L, Lt(z + u,y+ +) and LY = LY(x + u,y+ V).

In the region where the value of gradient is small, the direction is very unstable numerically. So a better

choice of the functional is obtained by multiplying the above functional by the norm of the gradient. This
yields the following modified functionial:

Fi(x, y, u, u., uy, vt, V., L, R) =
•/L,(1 +ur) + Lsor]2+ [Lt~y + Ly(I +V)]2'R-2•+ R2- [L,(I + u,) + Lv,]R, -[L.,u,+ L(I+ )].

The minimal point is reached when the gradient of the two images has the same direction. However this does
not mean we get the correct. nmatching. Minimizing the functional is just a necessary condition for matching,
not a sufficient condition. For two images to be matched, we introduce second term of the functional -
matching image curvature. We describe it. as follows:

Let

F2 (z, y, i", v, i., vy, "::, U, 1 , mV, iry, vy) = IK(L(z + u, y + v)) - K(R(z, y))I
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where K is the curvature operator. By expanding the right hand side term, we get,

F2 IK{(L•Lptj 2 y- L Ly + L2L ,)[(l + u')(l + VV) - VU,]2

"+ L3[(l + U.) 2tL, - 2(l + Ux)UVuty + u2uz.]

"+ L3[(l + V))1," - 2(1 + vy)vv,, + P,21"]

+ L2LY[2(I + vy)uyu.. - 2((l + u.)(1 + v,) + v£uy)u~y + 2(1 + u.)vzu,,

+U2v.- 2(1 + Ur)UMM':p + (1 + U.4 2 Vyy)

+ LLy [2(1 + )uP... - 2((1 + u.)(l + vy) + v. u))vt + 2(1 + u,)v'zav,

+ v.2uy - 2(1 + v,,),,.u., + (1 + &Y)2 U:.])/

{L2[(1 + U,)2 + u21 + 2L.Ly[(I + u,)vs + (1 + vp)u,] + L2[(l + vy) 2 + V.2)])3/2X y23/y

(RSRZZ - 2RZyRvJ1 + R,,,R) 3
/
1

Again, in the regions of smooth intensity we multiply the functional by the product of the norms of two
gradients. Our modified functional becomes:

F2( Z, Y, U, V, U5r, ,Vz,llz, ufly,' y, VXX, ViZ,V) =

I(n? + R;)3 / 2 {(L2 Lp - 2LL Lry + L2L.,)[(l + U.)(1 + Vz) -

+ LZ[(1 + 1,))y, - 2(1 + u,,)ut,,, + ,,f,,.]

SL[(l + a'V)2a., - 2(1 + VY)v.uy + V 2 u ]

+ L2L [2(I + vy)iyuis.r - 2((I + u.)(l + vy) + vuy~)u., + 2(1 + ur)vLuyy

+ fly P P., - 2(1 + itz),yI/zX + (1 + uz) 2vYY]

+ L.L2[2(1 + vy)u•v.. - 2((1 + ur)(1 + vy) + v/ti)v.,, + 2(1 + uX)vX1'yy

+ vu2u., - 2(1 + i/Y)i-'tl~y + (I + VY) 2U2"]1

- {L2 [(1 + 1,.) 2 + U2] + 2LZLy [(I + tu.)v. + (1 + v.)uy] + L2 [(1 + vY) 2 + V,)] }3/2

(R2R, - 2R, RYRy + R R2,) I

This term should play a more important role in the region where the direction of the gradients are close.
This means we will multiply the above term by a function of the first term g(F 1 ). Here g is small when F,
is large and g is large when F, is small.

In order to match in the smooth region we need the regularization terms. In order for the procedure to
converge, and overcome the noise sensitivity of the derivatives of intensity functions, we still use our larger
scale matching procedure. In order to allow sharp jumps to develop, we still need an essentially nonoscillatory
method for derivatives to avoid crossing the disconti, inties. All these facts mean that our previous work still
applies.

We have extended these techniques to multiple frames when many views of an image are given. In fact
a key application comes in frame fusion of videos. Neighboring frames are given and information is used to
reconstruct the central frame in an accurate manner. The algorithm is quite similar to our stereo matching

method described above.

Figures 25-31 show the results of our stereo matching algorithm.

Figures 32-33 show the results of our frame fusion algorithm. The upper left picture in Figure 32 is the
true "airplane" which was stibsampled down to a factor of 16 and placed in the middle of 10 consecutive
frames. The upper right shows the replicated image. Figure 33, upper right shows the greatly enhanced
result via frame fusion. Figure 34 demonstrates via excerpts from the Los Angeles Times, the use of frame
fusion in the legal area.
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We are currently integrating the work on video processing done by our collaborators in [3] together
with our frame fusion ideas. We believe that our method gives an interesting slant on the computation of
apparent velocity.

Finally we mention that a shape based denoising algorithm is now mature. This is based on the
regularization properties of both the single view, Hamilton-Jacobi approach and the parabolic equation
approach obtained in the photometric stereo case.
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6. Results:

Fig. I Fig. 2 Fig. 3 Fig. 4

Figure 1 is a semi-sphere shape, figure 2 is the shade of figure 1, figure 3 is the reconstructed
shape, and figure 4 is the shade reconstructed from figure 3.

Fig. 5 Fig. 6 Fig. 7 Fig. 8

Figure 5 is a shape of pyramid, its shade is shown on figure 6, the reconstructed shade and
shape are shown on figure 7 and figure 8.

Fig. 9 Fig. 10



Fig. 11 Fig. 12

Figure 9 is a shape of a face, figure 10 is the shade of the face with over head lighting. Figure
II and 12 is the reconstructed si-ape and shade from figure 10.

7. The shape from shading problem does not necessary take the form in (1.). It can take other
form. For example, the eye-ball model where the intensity can be written as:

a . ux + u+ +Y
1(t) = t+1s where t(x,y) =

The following is a example of reconstructing u x, y) from given i (x, y).

Fig. 13 Fig. 14 Fig. 15 Fig. 16

Figure 13 is the original shape, figure 14 is the shade of figure 13 with eye-ball model. Figure
15 and 16 are the reconstructed shape and shade.



Photometric Stereo

Fig. 17 Fig. 22

to

Fig. 18 Fig. 19 Fig. 20 Fig. 21

Figure 17 is the shape of a mountain, Figure 18, 19, 20 and 21 are four shades corresponding
to four different light directions. Figure 22 is the reconstructed shape of the mountain using
figure 18 to 21.



Fig. 23 Three dimensional view of the shape in figure 17

FN

Fig. 24 Three dimensional view of the reconstructed shape in figure 22



Stereo Matching

Fig. 25 Parn of a circuits board (left view)

Fig. 26 Part of a circuits board (right view)



Fig. 27 Matching function [ u(x,y)] of fig. 25 and 26.

Fig. 28 Fig. 29

Image pair of a mountain with building

Fig. 30 Matching function u(xy) of image pair 28 and 29



Fig. 31 Three dimensional view of u(x.y) in figure 30
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